Matemáticas
Grado y Doble Grado. Curso 2023/2024.
TÉCNICAS DE OPTIMIZACIÓN Y CONTROL - 800711
Curso Académico 2023-24
Datos Generales
- Plan de estudios: 0803 - GRADO EN MATEMÁTICAS (2009-10)
- Carácter: Optativa
- ECTS: 6.0
SINOPSIS
COMPETENCIAS
Generales
Aprendizaje en materas propias de la Optimización como extensión del clásico Cálculo de Variaciones.
Transversales
Resolución de sistemas de ecuaciones diferenciales lineales, Ecuaciones de Euler-Lagrange, Sistema de Hamilton, ecuaciones de Hamilton-Jacobi
Específicas
Manejar algunas técnicas modernas de análisis de ecuaciones diferenciales y en derivadas parciales asociadas a su formulación variacional. Plantear y resolver las ecuaciones de programación dinámica en diversas situaciones. Modelizar problemas de control determinista. Resolver analiticamente algunos problemas clásicos.
ACTIVIDADES DOCENTES
Clases teóricas
Clases magistrales: 1.2 ECTS.
Clases prácticas
Clases prácticas 0.6 ECTS.
Otras actividades
Tutorías: 0.2 ECTS.
Resolución de problemas, elaboración de trabajos escritos o preparación de exposiciones orales: 1.3 ECTS.
Estudio autónomo de los contenidos: 2.7 ECTS
Resolución de problemas, elaboración de trabajos escritos o preparación de exposiciones orales: 1.3 ECTS.
Estudio autónomo de los contenidos: 2.7 ECTS
TOTAL
6
Presenciales
2,4
No presenciales
3,6
Semestre
8
Breve descriptor:
Se inicia al estudiante en algunas cuestiones fundamentales del tratamiento de optimización y control que surgen en diversas aplicaciones a la asignación eficiente de recursos de diversa naturaleza.
Requisitos
Conviene haber cursado las siguientes asignaturas: "Cálculo diferencial", "Cálculo integral", "Elementos de ecuaciones diferenciales ordinarias" y "Ecuaciones diferenciales y en diferencias".
Objetivos
Tratamiento matemático de la teoría clásica de optimización mediante ecuaciones diferenciales y ecuaciones en derivadas parciales relacionadas con el Cálculo de Variaciones
Contenido
1. Introducción al Cálculo de Variaciones. 2. Controlabilidad y observabilidad de sistemas dinámicos controlados. 3. Control Óptimo: Principio de máximo de Pontryagin. 4. Control óptimo: Principio de la Programación Dinámica de Bellman. 5. Introducción a la Teoría de Juegos diferenciales
Evaluación
Dos exámenes parciales y, en caso de suspenso de uno o ambos parciales Examen final 75% (En el examen de la convocatoria extraordinaria podrá obtener solo el 75% de la calificación final)
Asistencia, participación en las clases, entrega de prácticas, trabajos y desempeño de los alumnos en clases: un máximo de 25% (50% de esta calificación se obtendrá por la asistencia al 85% de las clases presenciales).
Asistencia, participación en las clases, entrega de prácticas, trabajos y desempeño de los alumnos en clases: un máximo de 25% (50% de esta calificación se obtendrá por la asistencia al 85% de las clases presenciales).
Bibliografía
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Siciences, Springfield, MO, USA, 2007
A. Chiang,: Elements of Dynamics Optimization, McGraw-Hill, 1992
J.-M. Coron: Control and Nonlinearity, American Math. Soc., Providence, 2007
W..H. Fleming and R.W. Rishel: Deterministic and Stochastic Optimal Control, Springer-Verlag, 1975.
E.B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley and Sons, New York, 1967.
E. Sontag, Mathematical Control Theory. Segunda edición, Springer-Verlag, New York,1998.
E. Trelat.: Contrôle optimal: théorie et applications,Vuibert, Paris.,2008,
A. Chiang,: Elements of Dynamics Optimization, McGraw-Hill, 1992
J.-M. Coron: Control and Nonlinearity, American Math. Soc., Providence, 2007
W..H. Fleming and R.W. Rishel: Deterministic and Stochastic Optimal Control, Springer-Verlag, 1975.
E.B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley and Sons, New York, 1967.
E. Sontag, Mathematical Control Theory. Segunda edición, Springer-Verlag, New York,1998.
E. Trelat.: Contrôle optimal: théorie et applications,Vuibert, Paris.,2008,
Otra información relevante
Se ofrecerá material complementario en el Campus virtual
Estructura
Módulos | Materias |
---|---|
No existen datos de módulos o materias para esta asignatura. |
Grupos
Clases teóricas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo único | 22/01/2024 - 10/05/2024 | MARTES 09:00 - 10:00 | 114 | MIHAELA NEGREANU PRUNA |
MIÉRCOLES 09:00 - 10:00 | B05 | MIHAELA NEGREANU PRUNA |
Clases prácticas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo único | 22/01/2024 - 10/05/2024 | MARTES 10:00 - 11:00 | 114 | MIHAELA NEGREANU PRUNA |
MIÉRCOLES 10:00 - 11:00 | B05 | MIHAELA NEGREANU PRUNA |