Ciencia de los Datos Aplicada
Grado y Doble Grado. Curso 2025/2026.
SOFTWARE ESTADÍSTICO II - 806308
Curso Académico 2025-26
Datos Generales
- Plan de estudios: 081C - GRADO EN CIENCIA DE LOS DATOS APLICADA (2022-23)
- Carácter: Obligatoria
- ECTS: 6.0
SINOPSIS
COMPETENCIAS
Generales
CG8 - Demostrar un pensamiento lógico y un razonamiento estructurado.
CG10 - Desarrollar la capacidad de expresar y aplicar rigurosamente los conocimientos adquiridos en la resolución de problemas.
CG11 - Poner en práctica las técnicas, herramientas y metodologías propias de la Ciencia de los Datos en distintos ámbitos de aplicación.
CG10 - Desarrollar la capacidad de expresar y aplicar rigurosamente los conocimientos adquiridos en la resolución de problemas.
CG11 - Poner en práctica las técnicas, herramientas y metodologías propias de la Ciencia de los Datos en distintos ámbitos de aplicación.
Específicas
CE7 - Utilizar las herramientas de software necesarias para almacenar, procesar y visualizar datos de cualquier volumen sobre distintos ámbitos, tales como datos textuales, datos espaciales, relaciones espacio temporales, etc.
CE10 - Diseñar, programar e implantar aplicaciones de análisis y Ciencia de los Datos.
CE10 - Diseñar, programar e implantar aplicaciones de análisis y Ciencia de los Datos.
ACTIVIDADES DOCENTES
Clases teóricas
50%
Clases prácticas
50%
TOTAL
100%
Presenciales
2,4
No presenciales
3,6
Semestre
3
Breve descriptor:
Introducción a la programación y manipulación de objetos y archivos. Funciones definidas por el usuario, estadísticas y gráficas Librerías de R y recursos en Internet.
Contenido
1. Introducción al entorno R y RStudio.
3. Objetos en R
3. Presentación de resultados: introducción a Quarto y Rmarkdown.
4. Estructura de datos en R.
5. Estructuras de control de flujo.
6. Funciones de R y funciones propias. Variables locales vs globales. Funciones: matemáticas, estadísticas y alfanuméricas.
7. Gráficos en R Base.
9. Gráficos con ggplot2
8. Paquetes de R.
9. Introducción a tidyverse
Evaluación
Se valorará la nota final a través de los conocimientos adquiridos mediante el desarrollo de ejercicios, trabajos, participación en el aula y controles parciales.
Para los alumnos que no superen la asignatura por evaluación continua, la nota final tendrá en cuenta tanto la evaluación continua como la prueba final y se calculará como el máximo entre:
a) Calificación de la prueba final.
b) La media ponderada de la evaluación continua y la prueba final, siendo el peso de la evaluación continua de al menos el 35%.
Cualquier alumno podrá presentarse al examen final, siendo la valoración del mismo el 100% de su nota final.
En todo caso, el alumno sí tendrá la opción de superar la asignatura exclusivamente mediante el procedimiento de evaluación continua.
Para los alumnos que no superen la asignatura por evaluación continua, la nota final tendrá en cuenta tanto la evaluación continua como la prueba final y se calculará como el máximo entre:
a) Calificación de la prueba final.
b) La media ponderada de la evaluación continua y la prueba final, siendo el peso de la evaluación continua de al menos el 35%.
Cualquier alumno podrá presentarse al examen final, siendo la valoración del mismo el 100% de su nota final.
En todo caso, el alumno sí tendrá la opción de superar la asignatura exclusivamente mediante el procedimiento de evaluación continua.
Bibliografía
- Wickham, H., Grolemund, G.. «R for Data Science». Disponible gratuitamente en https://r4ds.had.co.nz/index.html
- Álvarez-Liébana, J. (2023). Curso introductorio de manejo y depuración de datos. «Manejo de datos en R». Disponible gratuitamente en https://javieralvarezliebana.es/curso-R-RTVE/#/title-slide
- Álvarez-Liébana, J. (2022). Curso introductorio a la visualización de datos. «Analizando datos, visualizando información, contando historias». Disponible gratuitamente en https://javieralvarezliebana.es/curso-slides-dataviz-ECI-2022/#1
- Álvarez-Liébana, J. (2021). Manual introductorio a R base. «Aprendiendo R sin morir en el intento». Disponible gratuitamente en https://javieralvarezliebana.es/curso-intro-R/
- Wright, C., Ellis, S.E., Hicks, S. C., Peng, R. D. (2021). «Tidyverse skills for data science». Disponible gratuitamente en https://jhudatascience.org/tidyversecourse/
- Matloff, N (2011). The Art of R Programming. A tour of statistical software design. Disponible como recurso electrónico en la biblioteca de la UCM.
- Crawley, M.J. The R book. Disponible como recurso electrónico en la biblioteca de la UCM
- Álvarez-Liébana, J. (2023). Curso introductorio de manejo y depuración de datos. «Manejo de datos en R». Disponible gratuitamente en https://javieralvarezliebana.es/curso-R-RTVE/#/title-slide
- Álvarez-Liébana, J. (2022). Curso introductorio a la visualización de datos. «Analizando datos, visualizando información, contando historias». Disponible gratuitamente en https://javieralvarezliebana.es/curso-slides-dataviz-ECI-2022/#1
- Álvarez-Liébana, J. (2021). Manual introductorio a R base. «Aprendiendo R sin morir en el intento». Disponible gratuitamente en https://javieralvarezliebana.es/curso-intro-R/
- Wright, C., Ellis, S.E., Hicks, S. C., Peng, R. D. (2021). «Tidyverse skills for data science». Disponible gratuitamente en https://jhudatascience.org/tidyversecourse/
- Matloff, N (2011). The Art of R Programming. A tour of statistical software design. Disponible como recurso electrónico en la biblioteca de la UCM.
- Crawley, M.J. The R book. Disponible como recurso electrónico en la biblioteca de la UCM
Estructura
Módulos | Materias |
---|---|
No existen datos de módulos o materias para esta asignatura. |
Grupos
Clases Teóricas y/o Prácticas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo Único | 08/09/2025 - 19/12/2025 | VIERNES 11:00 - 13:00 | - | JOSE LUIS BRITA-PAJA SEGOVIANO |
Actividades Prácticas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo Único | 08/09/2025 - 19/12/2025 | MARTES 13:00 - 15:00 | - | JOSE LUIS BRITA-PAJA SEGOVIANO |