Estadística Aplicada
Grado y Doble Grado. Curso 2024/2025.
TÉCNICAS AVANZADAS DE PREDICCIÓN - 801602
Curso Académico 2024-25
Datos Generales
- Plan de estudios: 0825 - GRADO EN ESTADÍSTICA APLICADA (2009-10)
- Carácter: Obligatoria
- ECTS: 6.0
SINOPSIS
COMPETENCIAS
Generales
CG8 Demostrar un pensamiento lógico y un razonamiento estructurado
CG9 Mostrar capacidad de síntesis
CG9 Mostrar capacidad de síntesis
Específicas
CE7 Describir situaciones con comportamiento aleatorio
CE9 Elaborar y construir modelos estadísticos adecuados a problemas reales y su validación
CE15 Elaborar previsiones y escenarios utilizando sus conocimientos estadísticos
CE9 Elaborar y construir modelos estadísticos adecuados a problemas reales y su validación
CE15 Elaborar previsiones y escenarios utilizando sus conocimientos estadísticos
ACTIVIDADES DOCENTES
Clases teóricas
50%
Clases prácticas
50%
TOTAL
100% = 6 ECTS
Presenciales
2,4
No presenciales
3,6
Semestre
8
Breve descriptor:
En esta asignatura el alumno aprenderá métodos de predicción específicos para una o más variables en aquellas situaciones para las que los métodos tradicionales ofrecen problemas de carácter teórico o la solución que proporcionan los mismos no es suficientemente satisfactoria.
Requisitos
.Manejo de software estadístico
.Haber cursado las asignaturas Diseño de Experimentos y Métodos de Predicción lineal (o sus equivalentes en la Diplomatura).
.Haber cursado la asignatura de Técnicas Multivariantes II.
.Haber cursado la asignatura de Series Temporales.
.Haber cursado las asignaturas Diseño de Experimentos y Métodos de Predicción lineal (o sus equivalentes en la Diplomatura).
.Haber cursado la asignatura de Técnicas Multivariantes II.
.Haber cursado la asignatura de Series Temporales.
Contenido
El Modelo General de Regresión Lineal.
Modelos de Regresión Lineal para datos con Multicolinealidad: Regresión PLS, PCR y RRR.
Modelos de Regresión Lineal para datos de alta dimensión: (Regresión Ridge, Lasso y Elasticnet).
Modelos de predicción no Lineal .
Modelos de Regresión Lineal para datos con Multicolinealidad: Regresión PLS, PCR y RRR.
Modelos de Regresión Lineal para datos de alta dimensión: (Regresión Ridge, Lasso y Elasticnet).
Modelos de predicción no Lineal .
Evaluación
El alumno será evaluado de forma continua a través de:
- Asistencia y prácticas realizadas en cada clase. La valoración de estas actividades será el 10% de la calificación final.
- Ejercicio práctico de evaluación cada 2 temas. La nota media será el 90% de la calificación final, siendo obligatorio realizar los 2.
La nota final tendrá en cuenta tanto la evaluación continua como la prueba final. Se calculará como el máximo entre:
a) La calificación de la prueba final.
b) La media ponderada de la evaluación continua y la prueba final, siendo el peso de la evaluación continua de al menos el 35%.
En todo caso, el alumno tiene la opción de superar la asignatura por evaluación continua.
Cualquier alumno tendrá derecho a una prueba final pudiendo resultar su calificación la nota final del curso.
- Asistencia y prácticas realizadas en cada clase. La valoración de estas actividades será el 10% de la calificación final.
- Ejercicio práctico de evaluación cada 2 temas. La nota media será el 90% de la calificación final, siendo obligatorio realizar los 2.
La nota final tendrá en cuenta tanto la evaluación continua como la prueba final. Se calculará como el máximo entre:
a) La calificación de la prueba final.
b) La media ponderada de la evaluación continua y la prueba final, siendo el peso de la evaluación continua de al menos el 35%.
En todo caso, el alumno tiene la opción de superar la asignatura por evaluación continua.
Cualquier alumno tendrá derecho a una prueba final pudiendo resultar su calificación la nota final del curso.
Bibliografía
Draper, N.R., Smith, H. (1998). Applied Regression Analysis. 3ª Ed. Wiley
Montgomery, D. C. ; PECK, E. A. and VINING, G. (2002) Introducción al análisis de regresión lineal. Compañía Editorial Continental (CECSA). Mexico.
Peña D. (2002). Regresión y diseño de Experimantos. Alianza Editorial. Madrid.
Pérez López, Cesar (2017). Técnicas avanzadas de predicción. Ed. Garceta
Valencia Delfa, J.L. & Diaz-Llanos, F.J. 2004. Métodos de predicción en situaciones límite. La Muralla.
Montgomery, D. C. ; PECK, E. A. and VINING, G. (2002) Introducción al análisis de regresión lineal. Compañía Editorial Continental (CECSA). Mexico.
Peña D. (2002). Regresión y diseño de Experimantos. Alianza Editorial. Madrid.
Pérez López, Cesar (2017). Técnicas avanzadas de predicción. Ed. Garceta
Valencia Delfa, J.L. & Diaz-Llanos, F.J. 2004. Métodos de predicción en situaciones límite. La Muralla.
Estructura
Módulos | Materias |
---|---|
ANÁLISIS DE DATOS | MODELOS DE PREDICCIÓN |
Grupos
Actividades prácticas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo mañana A | 22/01/2025 - 13/05/2025 | LUNES 13:00 - 15:00 | - | KENEDY PEDRO ALVA CHAVEZ |
Grupo tarde B | 22/01/2025 - 13/05/2025 | JUEVES 18:00 - 20:00 | - | KENEDY PEDRO ALVA CHAVEZ |
Clases teóricas y/o prácticas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo mañana A | 22/01/2025 - 13/05/2025 | JUEVES 11:00 - 13:00 | - | KENEDY PEDRO ALVA CHAVEZ |
Grupo tarde B | 22/01/2025 - 13/05/2025 | LUNES 18:00 - 20:00 | - | KENEDY PEDRO ALVA CHAVEZ |